案件

脱碳技术在废物到能源植物中被证明

Amager Bakke设施和哥本希尔中心
Amager Bakke
哥本哈根, 丹麦
发布: Mar 17, 2022
Biogas Production
可持续性

丹麦研究人员已经证明,可以去除大多数二氧化碳(CO2) from the emissions of a waste incinerator, and by demonstrating the viability of the process, the researchers believe that they have developed a key technology in the fight against climate change. A pilot plant has been operational in Copenhagen for several months and a novel gas monitoring technology has enabled the optimization of plant efficiency.

图片来源:Hufton&Crow / Arc

如果全球领导人要履行其实现净净零的承诺,那么他们的主要目标之一就是开发和利用脱碳技术,例如carbon capture and storage(CCS)和碳捕获,利用和存储(CCUS)。来自Technical University of Denmark(DTU)因此正在与哥本哈根高度创新的废物焚化厂合作,以开发能够捕获二氧化碳的过程(CO2)从其排放中。该项目正在利用Vaisala的高级气体分析仪来测量碳捕获效率,从而测量CCUS生存能力。

研究人员已经开发了一个试点工厂来删除CO2从焚化炉的排放Amager Bakke废物到能源植物, which is one of the largest combined heat and power (CHP) plants in northern Europe, with the capacity to treat 560,000 tonnes of waste annually. Developed by the Copenhagen-based waste management company ARC (Amager Ressourcecenter), which is jointly owned by five Copenhagen-area municipalities, the CHP plant features a number of innovations including a rooftop artificial ski slope, which is part of an outdoor activity center known as CopenHill.

开发了飞行员工厂以捕获CO2从废水处理,沼气生产,厌氧消化和废物焚化等过程的排放中。但是,研究人员还在研究合作的方式2可以被捕获和利用。在Amager Bakke安装之前,Pilot碳捕获厂是在废水处理厂运营的。“技术本身并不新鲜,”解释詹斯·乔尔斯博(Jørsboe), a researcher from the DTU,“However, the focus of our work has been to lower the cost of carbon capture, so that it can become economically feasible.”

Exhaust gas from the Amager Bakke incinerator is passed through an electrostatic precipitator (ESP) to remove particulates, NOx compounds are removed by selective catalytic reduction (SCR) and a scrubber removes oxides of sulfur. High levels of CO2remain in the flue gas and the main purpose of the pilot carbon capture plant is to investigate the feasibility of its capture. To achieve this, the gas is passed upwards through a column packed with beads and a monoethanolamine (MEA) solvent which scrubs the CO2来自气体。然后将溶剂传递给消除CO的解答器2, which is now almost pure, and regenerates the MEA for re-use. As a research project, the produced CO2is currently still vented to air, but on a commercial basis there are many different industrial applications in which CO2 can be utilized. For example, CO2可以在Sabatier过程中与氢反应,以在存在镍催化剂的情况下在温度和压力下产生甲烷(气燃料)和水。如果使用可再生能源(例如太阳能,沼气或风能)通过电解产生氢,则可以是制造燃料的绿色方法。

CO2还用于其他各种各样的行业,包括食品和饮料,制冷,医疗,园艺,消防,焊接等,因此,如果CO2可以以商业质量和规模生产。

监视碳捕获效率

仅当CO时才能实现碳捕获过程的优化2在碳捕获过程之前和之后,都可以连续监测浓度。因此,幸运的是世界上第一个内联合行2Vaisala在试点植物建设之前在芬兰开发了湿度和甲烷监测器。

焚化炉的废气可能具有腐蚀性和潜在的爆炸性,因此过去不可能进行在线监测。直到最近,唯一的解决方案是在过程之外提取样品以进行分析,但是此方法不适合过程控制和优化,并且具有许多固有的缺陷,例如需要从样本线中去除湿度和A频繁重新校准的要求。

VAISALA的多气探针MGP261的开发解决了所有这些监测挑战,尤其是在随后是姊妹产品MGP262之后,该挑战适用于测量高浓度的CO2and was therefore ideal for the continuous inline monitoring of almost pure CO2after the pilot plant’s desorber.

The pilot plant employs three Vaisala probes in total, with the MGP261 monitoring incoming incinerator exhaust gas, and the MGP262 measuring the purity of the extracted CO2。第三个探针是VAISALACARBOCAP®CO2探针GMP251,检查CO的水平2(碳捕获后)在飞行员的废气中。

独特的监测技术

All three monitoring probes contain CARBOCAP® technology which utilizes an electrically tunable Fabry-Pérot Interferometer (FPI) filter. In addition to measuring the target species, the micromechanical FPI filter enables a reference measurement at a wavelength where no absorption occurs. When taking the reference measurement, the FPI filter is electrically adjusted to switch the bandpass band from the absorption wavelength to a non-absorption wavelength. This reference measurement compensates for any potential changes in the light source intensity, as well as for contamination in the optical path, which means that the sensor is highly stable over time.

在MGP261和MGP262中,湿度和CO2用相同的光学滤波器测量,第二个光通道测量甲烷。从许多方面来说,这将实验室光谱仪的分析能力与工业过程控制仪器的简单,坚固的设计结合在一起。

詹斯·乔尔斯博(Jørsboe)在评论监测设备的性能时说:“我们对Multigas探针的准确性和可靠性感到高兴;尤其是因为他们使我们能够从废物焚烧中了解烟气的管理很多。关于化石燃料燃烧的排放知之甚少,但是关于废物焚化的排放的信息较少。

The technology employed by the Vaisala probes is also helping to minimize operational costs because by effectively calibrating themselves the probes’ service requirements have been minimal and downtime is avoided.”

在哥本哈根和全球捕获碳捕获

有了连续内联监测的好处,研究人员在评估了十二种不同的试点植物配置后能够优化碳捕获性能。证明了碳捕获过程的生存能力后,下一步是评估碳储存和利用的相对优势。詹斯·乔尔斯博(Jørsboe)说:“目前,CO的利用2is the more expensive option because of the costs associated with the required further refinement of the CO2,因此,Amager Bakke工厂的所有者计划申请15亿英镑(2.3亿美元)的CCS工厂,每年可捕获50万吨二氧化碳 - 如果丹麦州立州提供了足够的监管框架,则提供了足够的资金。该植物将采用与试点碳捕获工厂证明的相同的胺擦洗过程。”

1吨市政废物(MSW)的焚化与释放0.7至1.7吨有关2, depending on the content of the waste. Consequently, energy generation from waste incineration is more carbon-intensive than the burning of fossil gas, so carbon capture offers an opportunity to manage the growing requirement for municipal waste treatment without generating unacceptably high levels of GHGs.

展望未来,詹斯(Jens)认为,这项技术可以在世界上的每一个废物焚化器上应用,根据生态图的最新数据,该技术代表约2500个WTE工厂,每年的处置能力约为4亿吨。
此外,应该有可能收获残余热量,这些热量可以转移到当地工业或地区供暖网络。

总结说,詹斯说:“The recent COP26 climate change conference in Glasgow highlighted the urgent need for technologies that can help reduce global emissions of greenhouse gases such as CO2。许多国家都承诺实现零净目标,因此我们在Amager Bakke废物到能量工厂的工作为他们提供了一个机会,以投资于实现该目标的方式之一。”